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Periodic orbit effects on conductance peak heights in a chaotic quantum dot

L. Kaplan*
Department of Physics and Institute for Nuclear Theory, University of Washington, Seattle, Washington 98195

~Received 6 March 2000!

We study the effects of short-time classical dynamics on the distribution of Coulomb blockade peak heights
in a chaotic quantum dot. The location of one or both leads relative to the short unstable orbits, as well as
relative to the symmetry lines, can have large effects on the moments and on the head and tail of the
conductance distribution. We study these effects analytically as a function of the stability exponent of the orbits
involved, and also numerically using the stadium billiard as a model. The predicted behavior is robust,
depending only on the short-time behavior of the many-body quantum system, and consequently insensitive to
moderate-sized perturbations and interactions.

PACS number~s!: 05.45.Mt, 05.60.Gg, 03.65.Sq, 73.23.Hk
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I. INTRODUCTION

Quantum dots, semiconductor devices in which electr
are confined to live inside a two-dimensional mesoscop
sized region, have generated much experimental and the
ical interest in the past decade@1#. In the Coulomb blockade
regime@2#, the dot is weakly coupled to the outside throu
two narrow or tunneling leads, and individual resonances
be observed when the Fermi energy in the leads matche
energy of a state ofN electrons in the dot. As a function o
the Fermi energy or gate voltage, one then observes a s
of peaks in the conductance, the peak width being contro
by the temperature, and the spacing between them by
classical charging energy required to add one more elec
to the dot~in the experimentally typical regime where th
level spacing is large and the intrinsic resonance width sm
compared with the temperature!. The conductance pea
height of thenth resonance is then given by

Gn5
e2

h

p

2kT
gn , ~1!

where

gn5
GanGbn

Gan1Gbn
, ~2!

and Gan and Gbn are the partial decay widths of thenth
resonance through each of the two leads labeleda andb.

Each of the two partial widths is given by Fermi’s golde
rule as the square of a tunneling matrix element. This ma
element in turn is obtained~in the single-particle picture! by
taking the overlap of the normal derivative of thenth dot
wave function along the boundary with the electron wa
function in the lead@3,4#,

Gan5Cau^]'Cnufa&u2 ~3!

~and similarly forGbn), wherefa is the relevant transvers
wave function in leada, ]'Cn is the normal derivative of the
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nth dot eigenstate at the boundary, andCa is a constant
associated with the height of the barrier~possiblyCaÞCb if
the two leads are unequally coupled!. Because tunneling will
always be dominated by the lead mode which has the lar
longitudinal energy, we may without loss of generality r
quirefa to be the lowest transverse energy mode of the l
@3#. For a smooth lead potential, this will be given by
Gaussian,

fa;e2(q2q0)2/2s2
, ~4!

where the widths;A\ depends on the detailed properties
the lead.

Of course in reality the multielectron state inside the d
is not given by a product of single-particle states, nor do
know the electronic Hamiltonian inside the dot well enou
to have any realistic hope of being able to compute the w
functionsCn . We will come back to these important issu
in Sec. II.

Many authors@5# studied the behavior of the conductan
peaksGn in the context of random matrix theory~RMT!.
There the overlapŝ]'Cnufa& are considered as random
Gaussian variables~real or complex!, and thus the widths
Gan , and Gbn becomex2 random variables of one or two
degrees of freedom in the absence or presence of a mag
field, respectively. These predictions have compared fav
ably with the experimental data@6#. In the present work, we
extend these dynamics-free results to include the effect
short-time dynamics on the distribution of conductance p
heights through a ballistic dot. In doing so, we are followi
the work of Narimanovet al., @3# who already treated the
special case of two leads placed symmetrically on
horizontal-bounce orbit of a stadium billiard~though focus-
ing on peak-to-peak correlations, rather than on the p
heights themselves, in contrast with the present work!. Here
we consider in full generality the short-time classical effe
on conductance peak heights, including the dependenc
the peak distribution on the stability exponents of the sh
orbit or orbits near which one or both leads may be locat
We also disentangle the effects of symmetry lines and s
metric lead placement from the effects of short-time class
dynamics.
3476 ©2000 The American Physical Society
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We note that although quantum dot experiments prov
one of the motivations for the present work, the effects
are considering are relevant to a wide variety of physi
situations where observable properties are affected by
statistical properties of wave functions. In particular, the c
ductance problem discussed here is formally analogous
situation often encountered in molecular or nuclear phys
where a reactionA→B→C takes place through an interme
diate or transition stateB living inside a metastable ‘‘well,’’
and the reaction rate is then determined by the structur
the wave functionB inside the well.

The paper is organized as follows: in Sec. II we brie
review some recent results concerning short-time dynam
effects on wave function intensities. We focus in particu
on the separation of scales between the bounce time in
dot and the time at which eigenstates are resolved, and o
consequent robustness of short-time effects onstatistical
wave function properties. In Sec. III we analyze the effe
of short periodic orbits~s.p.o.’s! on conductance peak stati
tics for several qualitatively different situations: one lead
a s.p.o., two leads on the same s.p.o., and two leads on
ferent s.p.o.’s for which the spectral envelopes may be in
out of phase with each other in the energy range of inter
Numerical tests of these predictions appear in Sec. IV,
lowed by concluding remarks in Sec. V.

II. SCARS AND WAVE FUNCTION INTENSITIES: BASIC
RESULTS

The scar effect is one of the most visually striking aspe
of quantum chaotic behavior. It was noted already in
1980s that the quantum wave functions of classically cha
systems display an anomalous enhancement and suppre
of intensity in the vicinity of the unstable periodic orbit
contrary to the naive expectation of wave function rando
ness and uniformity@7#. Early theories of this phenomeno
@8# treated the short-time linearized dynamics around an
stable orbit, and thus made predictions about ener
smoothed spectral properties. More recently, theories
scars were extended to include long-time nonlinear rec
rences, making possible predictions about the distribution
individual eigenstate intensities on a given periodic orbit@9#.
The scar formalism was also adapted to study wave func
structure quantitatively in systems as varied as Sinai-t
billiards @10# and in two-body random interaction ensemb
in nuclear physics@11#.

The key result of this work that we need for the pres
analysis is that wave function intensities in a closed sys
are given by

u^Cnuf&u25r nSf
smooth~En!, ~5!

whereSf
smooth(E) is a smooth local density of states appr

priate to the test statef, andr n are randomx2 variables. The
smooth envelope can be determined by Fourier transform
the short-time autocorrelation function off,

Sf
smooth~E!5TF@Af

short~ t !#, ~6!

where

Af
short~ t !5^fuf~ t !&e2t2/T0

2
~7!
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with some cutoff timeT0. Now as long as the cutoffT0 is
chosen to be small compared with the Ehrenfest time, wh
scales as the inverse Lyapunov exponent of the system t
log(kFL) (L being the size of the dot!, the short-time dynam-
ics of the wave packetf may be determined semiclassicall
using classical motion linearized around the center of
wave packet.

In particular, letf ~which we will later identify withfa)
be a Gaussian wave packet centered on an unstable per
orbit of periodP. Then we have, fort5mP @12#,

Af
short~ t !5

e2 imu

Acoshbm1 iQ sinhbm
, ~8!

whereb.0 is the instability exponent for one iteration o
the periodic orbit,2u is the classical action in units of\
~plus Maslov indices, if any!, andQ is a nonoptimality pa-
rameter. The largest recurrences (Q50) are obtained when
the initial wave packetf is optimally oriented with respec
to the stable and unstable manifolds of the orbit. For a le
located on a fixed periodic orbit,Q will in general be a
function of the widths of the Gaussian mode in the lead†see
Eq. ~4! and Ref.@12#‡. More important than the analytic form
of Eq. ~8!, however, is the fact that for weakly unstable orb
~strictly b!1, though due to numerical factorsb'2 is al-
ready in a sense ‘‘weak’’!, strong recurrences inA(t) persist
for O(b21) periods. In the energy domain, we obtain bum
in the smoothed local density of statesSf

smooth(E) of width
O(b)!1 compared to the spacing between the bumps,
of height O(b21)@1 compared to the mean. Very rough
speaking then,O(b) of all wave functions are ‘‘scarred’’ on
the periodic orbit, having an intensity thereO(b21) greater
than the mean, while most of the remaining wave functio
are ‘‘antiscarred,’’ their intensity on the periodic orbit bein
much smaller than the mean. This separation of wave fu
tions into scarred and antiscarred ones is of course on
oversimplified picture, and one can obtain quantitatively
full distribution of wave function intensities on the orbit as
function of the exponentb; such a comparison between a
analytic result for the tail of the intensity distribution an
numerical data was in fact performed in Ref.@13#. One can
also study the moments of the intensity distribution, a
finds, for example, that the mean squared intensity
proachesp/b times the RMT expectation for smallb ~in
units where the mean intensity in normalized to one!.

We emphasize the distinction between scar predicti
and the brute-force semiclassical computation of cha
wave functions@14#. In many physically interesting situa
tions, the Hamiltonian of the system is not known nea
well enough to compute individual eigenlevels and eige
states either semiclassically or indeed using the full quan
machinery. What is of interest in such situations is not
much the detailed structure of thenth eigenstate in a given
sample, but rather attaining a theoretical understanding of
statistical properties of the system. In a billiard~hard wall!
system, changing the boundary by even one square w
length far away from the periodic orbit of interest will a
ready destroy the detailed structure of individual wave fu
tions on the orbit, but will not affect statistical propertie
such as the distribution of intensities on the orbit. In the tim
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3478 PRE 62L. KAPLAN
domain we see this easily by recognizing that to resolve
dividual eigenstates requires following the dynamics to tim
of order of the Heisenberg time, which scales as\ over the
mean level spacing, orO(kFL) bounce times ind52. Scar
predictions, on the other hand, only require short-time
namical information, on the scale of the one-bounce timeTB
~or, to obtain the full effect, the classical Lyapunov dec
time TB /b if the instability exponentb is small!. Thus de-
formations of the Hamiltonian will not affect these statistic
predictions as long as the mean free path associated
such deformations is larger than the sample sizeL ~i.e., as
long as we truly remain in the ballistic regime!.

In the energy domain, the mean level spacing ind52
goes as 1/L2 ~in units wherem,\;1), while the scale asso
ciated with scar effects~i.e., the separation between th
bumps in the smooth local density of states envelope! is
1/TB;kF /L. Thus a single bump in the local density
states corresponds toO(kFL)@1 level spacings, and in th
high-energy regime~i.e., many electrons in the dot! the re-
sulting wave function intensity statistics will be quite inse
sitive even to perturbations that are large compared with
mean level spacing.

The preceding argument also applies to electron-elec
scattering effects. It is known that a rather weak interact
beyond the mean field will completely destroy level rep
sion, and cause the distribution of level spacings to appro
a Gaussian form, in strong contrast with the Wigner-Dys
prediction of the single-particle theory@15#. Gaussian behav
ior is indeed what is observed experimentally in such s
tems. This is not surprising because strong multiparticle
fects on the level spacing scale require only that
interaction mean free path be smaller than the very la
Heisenberg scale;(kFL)TB . On the other hand, as we hav
seen, the effects on wave function statistics will be weak
long as an individual electron can freely travel across
device before interacting.

It is also known~by comparing the ground state of a d
with N electrons with the excited states of the same dot c
taining only N8,N electrons! that adding electrons to th
dot changes the shape of the mean field potential, and
has a significant effect on the character of the single-part
states. Arguments very similar to those in the preced
paragraphs tell us that a very small change in the effec
potential ~resulting in matrix elements of the perturbatio
which are of order of the mean level spacing! is sufficient to
destroy our predictive power for individual wave function
but does not affect thestatistical properties of these wav
functions, which are associated with a much shorter ti
scale~the bounce time! and are therefore robust to any su
perturbation. The statistical predictions would become irr
evant only if adding one or a few electrons to the d
changed the resulting potential in such a way as to co
pletely change the character of the short classical trajecto

III. CONDUCTANCE PEAK HEIGHTS IN CHAOTIC
SYSTEMS

A. Generically placed leads

Within the context of RMT, Alhassid and Lewenkopf@16#
derived an explicit form for the distribution of conductan
peak heightsgn , allowing for the possibility of unequal lead
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(CaÞCb above! and also allowing for correlated channel
In the presence of time reversal symmetry,1 for two leads
consisting of one channel each, this distribution reduces

P~g!5E
1/2sa

`

dtE
1/2sb

`

dt8
~4g/2p2!e2(t1t8)g

A~sat21/2!~sbt821/2!

3FK0~2gAtt8!1
1

2SA t

t8
1At8

t D K1~2gAtt8!G
5

1

A2pg
S 1

Asa

1
1

Asb
D expF2

g

2S 1

Asa

1
1

Asb
D 2G

5A 2

ps* g
e22g/s

* , ~9!

wheresa andsb are the mean partial widths through the tw
leadsa and b, and in the last line we use the fact that th
distribution depends only on the quantitys* defined by

1

As*
5

1

2 S 1

Asa

1
1

Asb
D . ~10!

For equal leads,s* 5sa5sb , and we also notice that in gen
eral the distribution ofg is just the Porter-Thomasx2 distri-
bution of one degree of freedom, with mean heights* /4.

In this paper we will primarily be interested in the phys
cal case of equal-sized leads~but also see Sec. III E!, how-
ever, as we will see below, the more general expression
very useful starting point for studying periodic orbit an
symmetry effects.

For two generically placed equal-sized leads, we havesa
5sb5s0, and

Pgeneric~g!5A 2

ps0g
e22g/s0. ~11!

The properties of this Porter-Thomas distribution are w
known; in particular

^g&generic5
s0

4
and ^g2&generic53^g&generic

2 . ~12!

The ratio of the mean squared height to the square of
mean, also known as the inverse participation ratio, is
simplest measure of the degree of fluctuation in peak nte
ties.

We note also that for two leads that are symmetrica
placed in a dot with reflection symmetry, the two part
widths Gan andGbn are equal for each resonancen, and we
havegn5Gan/2. The peak heights are then again distribut
according to a Porter-Thomas law, but with a larger me
height:

1For definiteness, we will consider throughout the time-rever
invariant situation. Of course, the calculations can also be car
through in the presence of a magnetic field~the wave function in-
tensity distribution for that case was studied extensively in Re
@13,12#!, and all predicted effects are qualitatively similar there.
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Psymmetric~g!5A 1

ps0g
e2g/s0, ^g&symmetric5

s0

2
. ~13!

This factor of 2 enhancement associated with perfect co
lation between the two leads, and independent of any sh
time dynamical effects, is already present in the case of
horizontal bounce orbit considered in Ref.@3#. We note,
however, that the symmetry effect is much less robust t
the dynamical effect, requiring the dot potential to be p
fectly symmetric to better than a single level spacing@other-
wise the even and odd states mix, and we recover the gen
result of Eq.~11!#.

Another independent effect, also present in the spe
example treated in Ref.@3#, is associated with the placeme
of one or both leads on the symmetry lines of the system
both leads are placed on a given symmetry line, as in
case of the horizontal bounce orbit of the stadium, then o
the even states produce resonances, leading to half as m
peaks as naively expected, but with double the mean he
of Eq. ~13!:

^g&same sym line5s0 ~half expected density!. ~14!

In a system with two symmetry lines such as the Bunimov
stadium or the Sinai billiard, we may also consider the c
of two leads on different symmetry lines. Then only a quar
of the eigenstates produce conductance peaks, the two p
widths are uncorrelated but each is doubled with respec
the naive expectations0, and we obtain@cf. Eq. ~12!#

^g&diff sym lines5
s0

2
~quarter expected density!. ~15!

Finally, for just one lead on a symmetry line, only the ev
wave functions contribute with mean partial width 2s0
through the symmetry line lead ands0 through the other
lead; the general expression of Eq.~9! then leads to

^g&one on sym line5
2

~A211!2
s0

'0.343s0 ~half expected density!.

~16!

Thus we see that a rich diversity of conductance beha
may be observed simply by considering the placement of
or both leads with respect to the symmetry lines of the s
tem.

B. One lead on short periodic orbit

We now put aside symmetry considerations, and cons
a scenario where one of the two conducting leads, saya, is
located on a short~unstable! periodic orbit of the chaotic dot
Then the mean partial width through leada is given bysa
5sa0Ssmooth(E) and@see Eqs.~3! and~5!# in an energy range
nearE. Here sa0 is the mean partial width through leada,
averaged over allE. Taking the two leads to be of equa
width, sa05sb5s0, the effective couplings* becomes en-
ergy dependent:

s* ~E!54s0„111/ASsmooth~E!…22. ~17!
e-
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e
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Note that the conductance is always dominated by the m
weakly coupled lead: thus near the scarring energiesSsmooth

is strongly enhanced, and the mean conductance is mo
ately increased~at most by a factor of 4!, while at the anti-
scarring energiesSsmoothis small, and the mean conductan
may be greatly suppressed. Sweeping through energy,
obtains a general expression for the distribution of cond
tance peak heights,

P~g!5
1

2pE0

2p

dEA 2

ps* ~E!g
e22g/s

*
(E), ~18!

where s* (E) is given by Eq.~17! and Ssmooth(E) by the
Fourier transform of Eq.~8!. Note that the energy interva
corresponding to one oscillation of the scarring envelope
taken as 0 to 2p, because we are working in units whe
\51 and the orbit periodP is also normalized to 1. The
distribution of Eq.~18! may be computed numerically~see,
for example, Fig. 6 below! for various values of the stability
exponentb @and of the lead nonoptimality parameterQ; see
Eq. ~8!#. First, however, we obtain some analytic asympto
results for the strongly scarred case (b!1), where the de-
viations from Porter-Thomas behavior are expected to
strongest.

The tail of the distributionP(g) will be dominated~for
any b) by the peak of the envelopes* (E), which coincides
of course with the peak inSsmooth(E) at E5u mod 2p @see
Eq. ~8!#. The integral may be performed by stationary pha
~as in Ref.@13#!, to obtain

P~g!5
1

2ps0g
AA

B
e2gA/2s0, ~19!

whereA54/s
*
max, andB measures the curvature of the env

lope at the maximum:B52]2(s
*
21)/]E2. Equation~19! de-

scribes the large-g behavior of the conductance peak dist
bution, whereA and B are appropriate functions of th
instability exponentb. For smallb one may simplify further,
and obtainA5112Ab/C1O(b) and B5 1

2 DC23/2b23/2

1O(b22), whereC'5.24 andD'45.1 are numerical con
stants~which analytically can be expressed using hyperg
metric functions!. So, finally, we obtain the large-g behavior
for small b:

P~g!5
1

A2p

C3/4

D1/2

b3/4

g
e2g(112Ab/C)/2s0. ~20!

Note the long tail dominated by the exponential behav
exp(2g/2s0) in the strongly scarred regime, to be contrast
with the much shorter tail exp(22g/s0) in the RMT (b
→`) case.

The asymptotic behavior of Eq.~20! is plotted for insta-
bility exponentb51 as the leftmost dashed curve in Fig.
and agrees well with numerical data, represented by a s
curve. Thus we see that the approximations used in obtain
Eq. ~20! are already good forb51, even though formally we
have used a small-b pproximation. The Porter-Thomas pre
diction of RMT @Eq. ~11!# appears in Fig. 1 as a dotted lin
for comparison.
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3480 PRE 62L. KAPLAN
The predicted increase in the frequency of very small c
ductance peaks is even more striking. In Ref.@12# it was
found that in between the scarring energiesE5u mod 2p
where the local density of states~LDOS! Ssmooth(E) is maxi-
mized and the antiscarring energiesE5u1p mod 2p
where it is minimized, the LDOS at the lead follows~for
sufficiently small instability exponentb) the exponential law

Ssmooth~E!5
2p

b
e2(p/2b)uE2uu. ~21!

Thus, outside of a small energy windowuE2uu<bu logbu
surrounding the energy of maximal scarring, most eig
states are strongly antiscarred, with a mean intensity at
location of the lead beingSsmooth!1. In the strongly antis-
carred regime whereGan is small, we may ignore the partia
width through the other leadGbn in Eq. ~2!, and so the con-
ductancegn is simply proportional toGan;Ssmooth(En). We
then obtain the small-g end of the conductance distribution

P~g!5
2b

p2g
, ~22!

which holds formally for exp(2p2/2b)!g/s0!b!1. The
constraint exp(2p2/2b)!g/s0 is of no practical signifi-
cance; we also note that although Eq.~22! becomes exac
only in the small-b limit, quantitative agreement is alread
obtained for exponentsb'0.5. Equation~22! should be
compared with the generic small-g behavior Pgeneric(g)
5A2/ps0g predicted by the Porter-Thomas law@Eq. ~11!#.

FIG. 1. The tail of the conductance peak height distribut
P(g) is plotted with solid curves for~i! one lead on a periodic orbi
with instability exponentb51, with the other lead generically
placed;~ii ! two leads on different orbits, each with instability e
ponentb51, and with in-phase spectral envelopes; and~iii ! two
leads placed on the same orbit withb51. Theoretical predictions
given by Eqs.~20!, ~35!, and ~33!, respectively, and strictly valid
for g@b21@1, are plotted as dashed curves. The mean pa
width s0 through each of the two leads has been set to unity h
and in all subsequent figures, so thatg can be plotted as a dimen
sionless quantity. For reference, the Porter-Thomas predictio
RMT @Eq. ~11!, to be compared with data sets~i! and ~ii !# appears
as the lower dotted curve, while RMT modified to include symm
try effects@Eq. ~13!, to be compared with data set~iii !#, is shown as
the upper dotted curve. In the dynamics-free limit whereb→`, the
data would approach these RMT results.
-

-
he

The above derivation applies to an optimal lead@Q50 in
Eq. ~8!#; for a nonoptimal lead the result of Eq.~22! is modi-
fied only by aQ-dependent constant, leaving the very d
tinct 1/g scaling behavior unchanged. The small-g behavior
of Eq. ~22! is plotted~for instability exponentb50.2) as a
dashed line in Fig. 2, and differs greatly from RMT expe
tations~the latter plotted as a dotted line in the same figur!.

The very large fraction of small conductance pea
clearly must have a significant effect on the moments of
conductance peak distribution. From Eq.~21! we see that
only a fractionO(bu logbu) of all energies haveSsmooth>1,
and at these energies we obtaing;s* ;s0 @see Eq.~17!#. At
all other energies we haveSsmooth!1, and thusg;s* !s0.
All momentsk>1 of the conductance distribution then sca
as

K S g

s0
D kL ;bu logbu ~23!

for sufficiently smallb. In particular, the first two moment
are given by

^g&'0.16bu logbus0 ,
~24!

^g2&'0.37bu logbus0
2 .

The inverse participation ratio~IPR! is a useful dimension-
less measure of a variation in heights which does not req
one to predict the mean of the distribution theoretically:

^g2&

^g&2 '
14.5

bu logbu
. ~25!

This result should be compared with an IPR of 3 for t
generic Porter-Thomas distribution@see Eq.~12!#. We see a
greatly enhanced fluctuation in peak heights in the c

al
re

of

-

FIG. 2. The small-g part of the peak height distributionP(g) is
plotted on a log-log scale for one lead on an unstable periodic o
with instability exponentb50.2 ~solid curve!. The asymptotic pre-
diction of Eq.~22!, valid for g!b!1 appears as a dashed line
slope21. For reference, the RMT prediction of Eq.~11! appears as
a dotted line of slope21/2. Note the different power-law behavio
Again, the normalization is set so that the mean partial wi
through each lead is given bys051. The data would be almos
identical for the cases where both leads are located on the s
periodic orbit withb50.2, or where they are located on two in
phase orbits~not shown!.
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where one of the leads is located in the periodic orbit. W
also note that the numerical prefactor of'14.5 is valid for
an optimally placed lead@Q50 in Eq. ~8!#. In general there
is an additional prefactor which is an easily computable a
lytic function of the width of the Gaussian lead mode and
the monodromy matrix of the periodic orbit, but the impo
tant scaling behavior, i.e., the increase as 1/bu logbu of the
fluctuations for smallb, is unchanged.

The numerically computed mean conductance^g& for one
lead on an orbit of instability exponentb appears in Fig. 3 as
a function ofb ~solid curve!. We observe significant devia
tions from the RMT value of 0.25@Eq. ~12!, wheres0 has
been set to unity# for b as large as 2.0, while for large
values ofb the RMT limit is approached. The dashed cur
in Fig. 3 ~top! shows the asymptotic prediction of Eq.~24!,
which is observed to agree well with the exact results o
for very smallb.

The asymptotic behavior of Eq.~25! appears in Fig. 4
~top! as a dashed curve, and can be compared with nume
data, which are plotted as a solid line. We observe that

FIG. 3. The mean conductance peak height^g& is plotted as a
function of the instability exponentb. Three cases are shown:~i!
one lead on an orbit of exponentb, with the other lead placed
generically;~ii ! two leads on unrelated orbits each having expon
b; and~iii ! two leads on out-of phase periodic orbits with expone
b. For two leads on thesameperiodic orbit, the mean conductanc
follows the RMT prediction~with symmetry!, and is independent o
the exponentb. ~Top! Solid curves are exact; dashed curves
asymptotic forms valid forb!1, given by Eqs.~24!, ~39!, and~37!,
respectively. In the dynamics-free limitb→`, all curves approach
the RMT prediction 0.25, which is shown on the graph for compa
son.~Bottom! Same data are shown for moderate to large value
the exponentb, where the asymptotic forms are not applicable.
e

-
f

y

al
e

approximations leading to Eq.~25! do not lead to a quanti-
tatively correct answer until we reach the very weakly u
stableb!0.1 regime. On the other hand, strong enhan
ment of the IPR compared to the RMT value of 3 is alrea
clearly visible even near the moderate exponentb51, where
the IPR is observed to be almost twice the RMT predictio
Figure 4~bottom! shows the same calculation, focusing in o
the IPR behavior for moderate values ofb, where the ap-
proximations leading to Eq.~25! do not apply.

The analysis in this subsection easily generalizes to
case where the lead located on the periodic orbit also lies
a symmetry line of the system. As discussed in Sec. III A,
odd eigenstates do not then produce resonance peaks,
for the even states we usesa052s0, and thus

s* ~E!54s0„111/A2Ssmooth~E!…22, ~26!

instead of the expression given by Eq.~17!.

t
t

e

-
of

FIG. 4. The IPR~the ratio of mean squared conductance pe
height to the square of the mean! is plotted as a function of the
instability exponentb of the periodic orbit. Three cases are show
~i! one lead on an orbit with exponentb, with the other lead placed
generically;~ii ! two leads on unrelated periodic orbits, both wi
exponentb; and ~iii ! two leads on the same periodic orbit. Th
RMT prediction of 3 is shown as a dotted line for reference;
solid curves converge to the RMT value in theb@1 regime where
the orbit ceases to be important.~Top! The solid curves are exac
numerical results, while the dashed curves give the asymptotb
!1 predictions of Eqs.~25!, ~42!, and~32!. ~Bottom! Same data are
shown for moderate values ofb, where the asymptotic forms ar
not applicable.
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C. Leads on same periodic orbit, or on orbits related
by symmetry

We now proceed to consider more generally the case
cussed by Narimanovet al. @3#, where the two leads ar
either located on the same periodic orbit, or are located
orbits related by symmetry. First, we note that if the tw
leads themselves are related by a symmetry, then the
wave function intensities and thus the two partial widths
identical for each resonance, just as in the discussion lea
to Eq. ~13! in the generic case. Less trivially, let us consid
two leads located on the same orbit but not related b
symmetry ~for example, one may consider the horizon
bounce in a deformed stadium billiard lacking a left-rig
symmetry, and two leads placed at either end of the horiz
tal bounce orbit!. If the Gaussian packet corresponding to t
transverse mode in leadb were related to the Gaussia
packet associated with leada by time evolution in the closed
system, i.e.,

ufb&5e2 iĤ t/\ufa& ~27!

for somet, then ufa& and ufb& would have identical loca
densities of states,u^Cnufa&u25u^Cnufb&u2, and thus once
againGan5Gbn for each resonancen.

More generally, even though the centers of the Gauss
ufa& and ufb& must be related by time evolution if they li
on the same orbit, the time-evolved version ofufa& may
have a different aspect ratio or phase space orientation f
ufb&. In Ref. @17# it was found, however, that for any tw
optimally shaped leads, the two local densities of states
come almost identical in the the limit of small instabili
exponentb. Furthermore theminimumpossible correlation
between the two partial widths was shown to be 0.94 e
for b as large as 2.3~corresponding to a classical stretchin
factor eb510), and this correlation becomes even stron
for smallerb, so that for all practical purposes in the regim
where scarring effects are important we may takeGan'Gbn
for any two optimally oriented leads.

In the case where either of the leadsa or b are not opti-
mally shaped so as to be aligned with the stable and unst
manifolds of the periodic orbit, we have the more gene
expressions

Gan5Ca„ar n1~12a!r an…S
smooth~En!,

~28!

Gbn5Cb„ar n1~12a!r bn…S
smooth~En!,

where we normally consider equally coupled leadsCa5Cb
as before, andr n , r an , and r bn are independent random
~Porter-Thomas! variables. The parameter 0,a,1 may be
determined in terms of the linearized time evolution of t
two wave packets around the orbit@17#. In the weakly cor-
related regimea→0, the behavior becomes identical to th
of two leads on different orbits but having in-phase sho
time envelopesSsmooth(E). See Sec. III D below for a de
tailed discussion of that situation; for now we restrict ou
selves to the strongly correlated casea'1. We also note tha
all results valid for two leads on the same orbit are obviou
valid also for leads on two orbits related by symmetry~e.g.,
for the two V-shaped orbits of the stadium!.
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In the casea'1, valid for two nearly optimal leads lo
cated on a weakly unstable orbit, the conductance p
height distribution reduces simply to the distribution of wa
function intensities on a short periodic orbit. This distrib
tion was studied previously@13,12# in the absence of time
reversal symmetry~i.e., in the presence of a magnetic field!;
here we need to develop parallel results for the case whe
magnetic field is absent and the wave functions are there
real.

We begin with the moments of the distribution. At an
given energy, the peak heightsg are distributed according to
a Porter-Thomas distribution as in Eq.~13!, but the mean
height (s0/2 in the generic case! must be generalized to
Ssmooth(E)s0/2 @see Eq.~5!#. The moments ofP(g) are then
given by

^gq&5^@Ssmooth~E!#q&K S r n

s0

2 D qL , ~29!

where the average in the first factor is over energiesE and in
the second factorr n is distributed as the square of a Gauss
variable with variance 1. Note that the smooth p
Ssmooth(E) and the oscillating partr n of the spectrum are
taken to fluctuate independently, being associated with
tinct time and energy scales. For generically located~though
symmetrically placed! leads,Ssmooth(E)51 independent of
E, and we recover the result of Eq.~13!. We also note that
^Ssmooth(E)&51 by normalization, so the mean conductan
peak height is given by

^g& leads on same orbit5
s0

2
, ~30!

when both leads are located on the same orbit, indepen
of the stability of the orbit. This is in contrast with our find
ing in Sec. III B @Eq. ~24!#, that the mean conductance
suppressed when only one lead is located on a short o
Furthermore, the mean squared intensity in this case isen-
hancedcompared to the generic value,

^@Ssmooth~E!#2&5(
t

uAshort~ t !u25(
m

1

coshbm
'

p

b
,

~31!

where in the first line we have used the property of Four
transforms@recalling Eq.~6!#, in the second line we have
substituted from Eq.~8! the optimal (Q50) form of the
short-time autocorrelation function, and in the third line w
have taken the strong scarring (b!1) limit. Then we obtain

^g2&'3
p

b
^g&2. ~32!

The validity of this result is confirmed in Fig. 4~top!, where
the IPR (̂ g2&/^g&2) is plotted as a function of the instabilit
exponentb. The data for two leads on the same orbit app
there as the middle solid curve, which forb<2 agrees very
well with the asymptotic prediction of Eq.~32! ~represented
by a dashed line of slope21). The behavior of the sam
quantity for larger exponentsb can be seen in Fig. 4~bot-
tom!, where we observe that already forb51 the size of
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peak height fluctuations is three times the RMT expectat
and that deviations from RMT are noticeable even forb as
large as 3.

Thus the IPR can greatly exceed the RMT value of 3, a
grows as the orbit on which the leads are placed beco
less unstable. This suggests that there should be an exce
both very large and very small peaks as compared with
mean@qualitatively similar to the result~Eq. 25! for only one
lead on a periodic orbit#. Indeed one can study the tail of th
P(g) distribution in a way completely analogous to the c
culation in the previous subsection~and to the similar calcu-
lation in Ref. @13# for a system without time-reversed sym
metry!. From Eq. ~19!, we obtain @using s* (E)
52s0SSmooth(E) instead of the corresponding form Eq.~17!
appropriate for only one lead on a periodic orbit#

P~g!5A C

2p2D

b

g
e2bg/Cs0, ~33!

valid for small b and largeg. C and D are the numerica
constants used previously in Eq.~20!. As in Eq.~20!, we see
a much slower exponential decay in the tail than that p
dicted by RMT, but in this case the exponent is stronglyb
dependent, and so the tail becomes ever longer asb→0.
Equation~33! ~for b51) appears in Fig. 1 as the rightmo
dashed curve, and follows very well the exact numerical
sult, which is shown as a solid curve. We see that
asymptotic prediction of Eq.~33! is already very good even
for the moderate exponentb51, while the RMT prediction
@Eq. ~13!# is completely wrong in the tail~compare with
dotted curve!, even after symmetry effects are included.

This strong enhancement in the number of very large c
ductance peaks is balanced by a corresponding increas
the number of very small conductance peaks: the smag
part of the distribution is given again by Eq.~22!, exactly as
in the case of only one lead on a periodic orbit. The smag
data for two leads on the same orbit are not shown here,
appear very similar to the case already plotted in Fig. 2
only one lead on a short orbit.

The expressions obtained in this subsection need
course, to be modified for situations where one of both le
are located on a symmetry line of the system. The neces
modifications are completely analogous to those discusse
the previous two subsections, and we do not go into
details here.

D. Leads on different periodic orbits

We now arrive at perhaps the most theoretically intere
ing situation, where the two leads are located on distinct~not
symmetry related! periodic orbits of the classical system
This situation is particularly interesting, because a very r
diversity of behavior may be obtained depending on the r
tive phase between the classical actions, in units of\, of the
two orbits.~Of course, from an experimental point of view
some of the scenarios discussed in the present section
more difficult to achieve, as we will see below.! For definite-
ness and for simplicity of presentation, we will focus on t
case where two orbits have equal stability exponentsb,
though the qualitative results obviously do not depend
this assumption. We also take the periods of the two orbit
n,
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be approximately equal, instead of being related by so
other simple fraction like 1/2 or 2/3~see the end of this
subsection for a discussion of what happens in the c
where the two orbit lengths are not at all simply relate!.
Then the LDOS envelopesSsmooth(E) at the two leads are
identical oscillatory functions of energy, shifted with respe
to each other by some phasedu @see Eqs.~6! and ~8!#. We
note that obviously it is very unlikely for two orbits to hav
lengths that are equal to within a fraction of a wavelength.
reality, however, all that is necessary for the following d
cussion to apply is that the difference in length is small co
pared with either of the two lengths: then the LDOS env
lopes of the two orbits continue to be in phase or out
phase with each other for many oscillations of the envelo

For du50, we obtain two in-phase envelopes, and
cover thea50 situation of identical smooth envelopes wi
uncorrelated fluctuations under the envelopes. This scen
was mentioned already in Sec. III C@Eq. ~28!#, but the dis-
cussion there was postponed until now. We recall that
two uncorrelated partial widths with the same mean, the d
tribution of the conductances is a Porter-Thomas distribut
@Eq. ~11!#, just as in the perfectly correlated case@Eq. ~13!#,
but the mean conductance in the uncorrelated case is
half as large as in the correlated case. This argument ap
of course independently at each energy, so even after a
aging over energy we obtain the same distribution of c
ductances as in Sec. III C, but with the mean value shifted
a factor of 2. To summarize, the mean is given by

^g& leads on in-phase orbits5
s0

4
~34!

@cf. Eq. ~30!#, while the IPR and the small-g part of the
distribution @Eqs. ~32! and ~22!, respectively# remain un-
changed from the previously considered case. The tail of
conductance peak distribution becomes

P~g!5A C

2p2D

b

g
e22bg/Cs0. ~35!

The result of Eq.~35! is plotted forb51 as the middle
dashed curve in Fig. 1, and is observed to agree well with
numerical calculation, given by the corresponding so
curve. We again note that the asymptotic form of Eq.~35!
works quantitatively even thoughb in our case is not small
furthermore the tail of the peak height distributionP(g)
again differs greatly from the RMT prediction~the leftmost
dotted curve in the same figure!.

We now consider two envelopesSsmooth that are not in
phase with each other. From Eq.~21! we know that each
envelope falls off exponentially away from its peak, and w
also know from Eq.~2! that when the two local densities o
states are unequal, the conductance is always dominate
the more weakly coupled lead~smallerSsmooth). The maxi-
mum conductance then occurs at energies whereSa

smooth

'Sb
smooth. This maximum occurs at E5(fa

1fb)/2 mod 2p5fa1df/2 mod 2p, at which energy
Sa

smooth5Sb
smooth5(2p/b)exp(2pdf/4b). The maximum

possible conductance peak height is therefore very stron
suppressed compared with the RMT prediction,
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gout of phase orbits
max ;

s0

b
e2pdf/4b, ~36!

where the out-of-phase parameterdf should be taken be
tween 0 andp. We also note that the fraction of energ
space at which conductances this large are attained scal
b because of the exponential falloff in Eq.~21!; thus the
meanconductance peak height scales as

^g&out of phase orbits;s0e2pdf/4b, ~37!

suppressed by an exponential factor from the generic ex
tation of Eq.~12!. The most dramatic effect arises of cour
when the two envelopes are out of phase by exactlyp in the
energy region of interest. There we have

gmax;
s0

b
e2p2/4b ^g&;s0e2p2/4b. ~38!

An exact numerical calculation for^g& is plotted as the low-
est solid curve in Fig. 3~top!, and is observed to approac
the asymptotic prediction of Eq.~38! for small b, while for
large b it of course tends to the RMT prediction of 0.2
Again, Fig. 3~bottom! shows in more detail the behavior fo
moderate-to-large values ofb.

The situation described by Eq.~38! may be obtained in
one of the following two ways. One possibility is to take tw
orbits of the same period but different Maslov phases, res
ing in out-of phase behavior at all energies. Alternatively o
may consider two orbits of only approximately equal perio
then the two oscillating envelopes slowly move in and out
phase with each other as one sweeps through energy by
ing electrons to the dot.

In the scenario of leads placed on two orbits with irrat
nally related periods, we can also imagine collecting sta
tics over an energy window wide enough to include bo
in-phase and out-of-phase behaviors. We see in this case
the peak height will always be exponentially suppressed
cept at those energies whereboth LDOS envelopes
Sa

smooth(E) andSb
smooth(E) are near their respective maxim

i.e., where the wave function is scarred simultaneously
each of the two leads. Since in each envelope the bu
corresponding to scarred wave functions have a widthO(b)
compared with the spacing between the bumps, and sinc
bumps inSa

smooth(E) and Sb
smooth(E) are now assumed to b

uncorrelated, we find that a fractionO(b2) of all wave func-
tions produce substantial peaks, of heightO(b21s0). Then
the mean conductance peak height scales for smallb as

^g&uncorrelated orbits;bs0 , ~39!

and the higher moments of the distribution behave simila

^gk&uncorrelated orbits;b22ks0
k , ~40!

^gmax&uncorrelated orbits;b21s0 . ~41!

Again, we may measure the fluctuation in conductance p
heights by taking the ratio of the mean squared peak he
to the square of the mean~IPR!. This shows very strong
deviations from RMT expectations:
as

c-

lt-
e
;
f
dd-

-
-

hat
x-

at
ps

the

:

ak
ht

S ^g2&

^g&2D
uncorrelated orbits

;b22. ~42!

Because both leads must be scarred to obtain apprec
conductance, the fluctuation in conductance peak heigh
much stronger here than in the case of only one lead o
periodic orbit@Eq. ~25!#, or even in the case of two leads o
the same orbit@Eq. ~32!#.

The mean conductance peak height^g& for leads on two
unrelated periodic orbits of instability exponentb is plotted
as a function ofb as the labeled solid curve in Fig. 3~top!,
where theb!1 asymptotic prediction of Eq.~39! appears as
a dashed line. The behavior for largerb again can be seen in
Fig. 3 ~bottom!. Similarly, the IPR for this case can be foun
plotted numerically by the correspondingly labeled so
curves in Fig. 4~top and bottom!; again for smallb the result
agrees with the asymptotic prediction of Eq.~42! @Fig. 4
~top!; dashed line#.

E. Leads with unequal coupling

We have been focusing throughout on the simple and
perimentally motivated case of two equal-sized leads; ho
ever, all of the discussion and calculations in this sect
generalize in a very straightforward way to a scenario w
unequally coupled leads. Qualitatively, the main observat
that should be added to the previous discussion is that
lead which is more weakly coupled naturally has a stron
effect on the conductance peak heights and their distribut
and the location of the more weakly coupled lead relative
classical structures is most important in understanding
conductance behavior.

A particularly interesting case to consider is where one
the leads, sayb, is coupled to the dot much more strong
than the other lead, soCa!Cb in Eq. ~3!. Then Eq. ~2!
reduces togn'Gan , and the conductance depends only
the intensity of the wave function near leada. Since sb
@sa , Eq. ~10! becomess* 54sa , and we obtain a behavio
identical to that observed previously for two symmetrica
placed leads~Sec. III C!, except thats0 must be replaced
everywhere by 2sa . Thus, for example, we obtain

^g&5sa ~43!

~independent of the location of leada), while the IPR is
given by Eq.~32! if lead a is located on an orbit of instability
exponentb!1. The tail of the peak height distribution be
comes

P~g!5A C

2p2D

b

g
e2bg/2Csa. ~44!

Of course, for these results to be valid the coupling to leaa
must be weaker than the coupling tob even near energie
where leada is scarred; assumingb is placed generically,
this meansCa!bCb . If this condition is satisfied, the
unequal-leads experiment may present a practical alterna
to trying to ensure that both leads are centered on a peri
orbit.
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IV. NUMERICAL TESTS

We now proceed to look at the implications of the resu
of Sec. III for a specific chaotic system, namely, the Bu
movich stadium. This consists of two semicircular endca
of radius 1, attached to either side of a rectangle of dim
sion 232g. The system reduces to a circle forg50; maxi-
mum chaos is attained atg51. We will focus mostly on the
g51 special case, though scar effects are stronger at sm
values ofg ~as the periodic orbit instability exponentsb
become smaller!.

The ~Dirichlet! wave functions of a billiard system suc
as the stadium can be obtained by the plane wave met
where at eachkF one constructs the linear combination
plane waves that minimizes the integral ofucu2 along the
boundary, and then picks out those values ofkF where this
integral dips down towards zero. Of course, the integ
never becomes strictly zero because of the finite numbe
plane waves used at any givenkF ; however, it can easily be
checked that identifying all the sharp minima in the boun
ary integral with eigenvalues produces the right density
states, as predicted by the Weyl law and higher-order cor
tions. For each wave function obtained using this method,
can compute the partial widths through each of the two le
via Eq. ~3!, by simply integrating the normal derivative o
the wave function at the boundary, multiplied by the~Gauss-
ian! lowest transverse mode in the lead@Eq. ~4!#. The con-
ductance peak height associated with that resonance is
easily obtained using Eq.~2!.

We begin by considering two leads symmetrically plac
on the two semicircular endcaps. As we have seen abov
Eq. ~30!, the mean conductance peak height should be in
pendent of classical structures near the lead location, and
behavior is indeed observed when averaging over the en
range 300,kF,350. However, the fluctuation in pea
heights, as measured for example by the mean squ
height, is expected to depend strongly on whether the le
are located on a short periodic orbit that is normally incid
at the location of the lead@Eq. ~32!#.

This qualitative expectation is confirmed in Fig. 5, whe
we clearly see that the mean squared peak height is stro
enhanced over the RMT value whenever the leads~of width
s51.2/AkF'3.4lF) are located on a short periodic orb
Furthermore, the three shortest~and least unstable! orbits in
the stadium having normal incidence on the endcaps are
horizontal bounce ~HB!, the V-shaped orbit, and th
Z-shaped orbit, in that order, and these are seen to co
spond precisely to the three most pronounced peaks in
plot. We note that the periodic orbit length~as well as the
instability exponentb) must be measured by identifying th
four quadrants of the stadium billiard, due to symmetry: th
for example, the length of the horizontal bounce orbit is
12g54. Looking at the length of the orbit~and instability
exponent! in the full billiard, we would be led to underest
mate the true importance of scarring effects.

Note that the leads are always located on the upper ha
the stadium, equidistant from the center point of the up
straight segment. Thus, for both the horizontal bounce
the V-shaped orbit, the two leads happen to be on the s
orbit, while in the case of the Z-shaped orbit, the leads wo
be placed on distinct orbits that were related by symme
s
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As noted above, this difference has no effect on the cond
tance behavior.

We also see a strong increase in peak height fluctuat
as the leads approach the edge of the straight segment.
is not surprising, since the quantum behavior there
strongly influenced by bouncing-ball and near-bouncing-b
modes@18#. For a lead locatedon the straight segment of th
boundary, the IPR will tend to infinity in the high-energ
limit. In other words, a smaller and smaller fraction of a
modes will give rise to appreciable conductance in this lim

To understand the conductance behavior at a quantita
level, we focus in on the most pronounced peak in Fig.
corresponding to leads located on the horizontal-bounce
bit, i.e., centered opposite to one another on the two sem
cular endcaps. Forg51, the system previously considered
Ref. @3#, the mean squared peak height is observed to
enhanced by a factor of 1.78 over the RMT prediction,
compared with an expected enhancement of 1.81 com
from Eq.~32!, where we have used the valueb51.76 appro-
priate to this orbit.@We note that for the value of the lea
width s given above, the lead shape is close enough to be
optimal that we may ignore corrections associated with n
zero parameterQ in Eq. ~8!, discussed above.# Such close
agreement is surely accidental, as one expects deviations
to the finite number of conductance peaks being sampled
well as systematic finite-energy errors associated with c
rections to the semiclassical approximation and also with
presence of nonrandom bouncing ball and whispering gal
modes. Indeed, looking at leads centered on the horizo
bounce orbit in theg51/2 stadium, and also at leads ce
tered on the V-shaped orbit in the originalg51 stadium, we
find in each case that the observed mean squared peak h
is about 10% lower than the predicted value~but still much

FIG. 5. The IPR of the conductance peak heights~mean squared
peak height divided by the square of the mean! is plotted as a
function of the distance of each lead from the center of the stra
segment in a stadium billiard. The two leads are placed symm
cally on the two semicircular caps, and have an effective widths
51.2/AkF , which corresponds to'3.5lF in the energy range con
sidered (300,kF,350). The amount of fluctuation is significantl
enhanced when the leads are located on unstable periodic orbi
compared with the RMT prediction of 3. The locations of the thr
shortest periodic orbits having normal incidence on the semicirc
endcaps~horizontal bounce, V-shaped orbit, and Z-shaped orbit! are
marked on the plot. On the horizontal axisg51.0 corresponds to
the end of the straight segment, andg1p/2'2.57 corresponds to
the middle of the circular endcap.
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higher than the RMT expectation!. See Table I for details. In
all three cases, the measured value of^g2&/^g&2 is easily
distinguishable from the IPR value of 3.

The first two moments ofP(g), as shown in Table I,
provide useful and concise information about the distribut
of conductance peak heightsg, and can be easily used t
distinguish generic lead locations from the case of leads
cated on a short periodic orbit. More complete information
of course contained in the full distribution, as shown in F
6. @The distributions there are shown as cumulative pr
abilities*g

`dg8P(g8), so as to reduce the effect of statistic
noise.# We see, for the case of both leads located on the
orbit, a long tail@Fig. 6 ~bottom!, top solid curve# in good
quantitative agreement with the prediction of scar the
~dashed curve!. We also see in Fig. 6~top, solid curve, sec-
ond from top! the increased number of small conductan
peak heights as compared with RMT, and again in very g
agreement with scar theory predictions~accompanying
dashed curve!. We also recall~from Sec. III E! that, up to an
overall scaling factor of 2, exactly the same distributi
would be obtained for only one lead located on a short o
of the stadium, with the other, much more strongly coupl
lead located at a generic location.

We may also consider attaching two leads to the stadi
so that only one of them is located on a short orbit~compare
Sec. III B!. We see from Table I that in this case the me
conductance is reduced as compared with RMT, while
ratio of the mean square to the square of the mean is
hanced, in agreement with the predictions. The full proba
ity distribution for this case also appears in Fig. 6~appropri-
ately labeled solid curves, top and bottom!, where we see a
very noticeably shortened tail as well as an excess of sm
intensities, as compared with the previously considered c

TABLE I. Mean and mean squared conductance peak hei
are shown for several lead locations in the stadium billiard, and
compared with scar theory as well as with RMT. Unless sta
otherwise,g51 is used for the shape of the billiard~see text
above!. We consider two cases where both leads are located on
same~horizontal bounce! orbit, and one where they are located o
symmetry-related~V-shaped! orbits. In addition, scenarios ar
shown where one lead is located on the horizontal bounce, while
other is placed either on the V-shaped orbit or at a generic loca
(q52.3 in the coordinates of Fig. 5!. For reference, we also show
calculation where the two leads are symmetrically placed at a
neric location; there we see that good agreement with RMT is
tained. As in the figures, the mean partial width through each lea
set to unity.

Lead locations ^g& ^g2&/^g&2

Actual Theory RMT Actual Theory RMT

both on HB 0.50 0.50 0.50 5.33 5.43 3.0
both on HB 0.50 0.50 0.50 6.44 7.17 3.0
(g50.5)
both on V 0.50 0.50 0.50 4.23 4.80 3.0
HB and 0.21 0.22 0.25 3.70 3.73 3.0
generic
HB and V 0.20 0.19 0.25 4.11 4.50 3.00
generic 0.50 0.50 0.50 3.02 3.00 3.0
~symmetric!
n

-
s
.
-

l
B

y

e
d

it
,

,

n
e
n-
l-

ll
se

~namely, both leads on the HB orbit!. The distribution, in the
head, body, and tail, is in good agreement with the theor
cal prediction of Eq.~18!.

Finally, the next-to-last line in Table I shows the condu
tance behavior for the case of two leads found on unrela
short orbits, in this case the horizontal bounce and
V-shaped orbit. Both the suppression of the mean cond
tance and the enhancement of conductance fluctuations~as
compared with RMT! are observed, as predicted in Se
III D. However, the size of the effect is'20% smaller than
predicted by the theory. This difference may easily be
cribed to finite-energy effects considered above, in conju
tion with statistical fluctuations. The head of the distributi
is shown in Fig. 6~top, lowest solid curve!, and follows the
scar theory prediction, which again appears as a das
curve. The tail of the distribution would overlap the on
discussed in the immediately preceding paragraph~one lead
on HB, with the other lead generic!, and is not shown.

Finally, the last line in Table I shows the moments of t
conductance peak height distribution for generically plac

ts
re
d

he

he
n

e-
-
is

FIG. 6. The cumulative probability*g
`dg8P(g8) of having a

conductance peak height greater thang in a stadium billiard with
two leads is plotted for several lead locations, illustrating the va
ous scenarios considered in Sec. III:~i! both leads located on the
horizontal bounce orbit,~ii ! one lead on the HB orbit and the othe
at a generic location,~iii ! one lead on the HB orbit and the other o
the V-shaped orbit~top figure only!, and ~iv! the two leads sym-
metrically placed at a generic location. The solid curves repres
stadium data, while the dashed curves represent scar theory pr
tions @Eq. ~18!, etc.#; for the case of generically placed leads, t
scar theory prediction coincides with RMT~shown as a dotted
curve!. The axes are scaled so as to focus on the tail of the di
bution in the bottom figure and the head in the top figure.
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leads, which are seen to agree very well with RMT statist
The distribution for this case is also plotted in Fig. 6~top and
bottom!, and as expected it follows the RMT prediction.

V. CONCLUSION

In this paper we have studied the statistical properties
transmission through a weakly open chaotic cavity. We h
seen that RMT does a very good job in describing th
properties when the leads are located far from classic
important structures. However, the random-wave hypoth
needs to be modified for a quantitatively accurate descrip
of the transmission process when one or both leads are
cated near a classically important structure, such as an
stable periodic orbit. The unstable periodic orbits have
strong effect on the distribution of conductance peak heig
even in the limit where the dwell time inside the dot becom
very large compared to the Lyapunov scale on which cla
cal decay away from the unstable orbits takes place. T
implies that short-time classical dynamics leaves its imp
on quantum behavior at arbitrarily long-time scales, ev
though at these scales the classical dynamics loses
memory of its short-time behavior. We emphasize that
effect considered in this paper is unrelated to direct p
cesses, and arises purely from quantum mechanical inte
ence.

We have also seen that scarlike effects on conducta
behavior in a quantum dot are robust, and that statist
predictions about the distribution of peak heights can
made even though we do not have enough information
compute the individual resonances of the system, ei
quantum mechanically or semiclassically. This means,
particular, that changes in the mean field which arise as e
trons are added to the dot may not significantly affect
statistical properties of the conductance, even though t
completely destroy all predictive power for individual res
nant wavefunctions. Similarly, electron-electron interactio
are expected to make the single-particle picture irrelevant
the purpose of predicting individual resonances or the sp
ing distribution, but should not affect the statistical prop
ties of the conductance as long as the interaction mean
-

so

e
,

ett

d

.

f
e
e
ly
is
n

lo-
n-
a
s,
s
i-
is
t
n
all
e
-

er-

ce
al
e
to
er
n
c-
e
ey

s
r

c-
-
ee

path is larger than the ballistic path associated with o
crossing of the dot.

The mean conductance, the higher moments, and the
distribution of peak heights may all be easily computed us
scar theory ideas, for the various scenarios considered in
paper. These include a single lead located on a short o
two leads located on distinct orbits, or two leads located
the same orbit. The last scenario was seen to be mathem
cally equivalent both to two leads located on orbits rela
by symmetry, and also to a situation of unequally coup
leads, where only the weakly coupled lead needs to be
cated on a short orbit. All these scenarios may be relevan
different experimental setups.

Experimentally, it is of course much easier to change
classical dynamics inside the dot~either by adjusting the
classical geometry or by turning on a strong magnetic fie!
than it is to sweep through different locations of the lea
Thus one may consider a situation where the lead locat
are fixed, but the classical dynamics is changed by adjus
either a voltage or a magnetic field strength. Changes in
peak height fluctuations are then predicted when the adj
able parameter passes through values which cause a per
orbit to hit one or both of the leads.

In this paper we have not considered peak height corr
tions @3# or the effect of finite temperature on conductan
peak heights@19#; both of these are important effects whic
have been addressed previously by other authors. We h
emphasized the crucial importance of including dynami
information for a quantitative understanding of conductan
peak heights in a quantum dot. We also note that sim
dynamical effects should be present in other physical sit
tions where tunneling in or out of a chaotic well is importan
and that dynamical structures inside the well~such as un-
stable periodic orbits! will influence the distribution of cou-
pling strengths between the well and the outside wo
Work along these lines involving tunneling into a smoo
potential well is currently under development.
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